upravte zadané rovnice do základního tvaru ax2 + bx + c = 0
poté rozložte trojčlen na součin a určete kořeny
rozklad |
|||
(x – 9)(x +
1) = 0 |
(x + 5)(x –
5) = 0 |
(x – 3)(x +
1) = 0 |
(x + 7)(x +
7) = 0 |
(x – 10)(x
+ 2) = 0 |
(x – 6)(x +
4) = 0 |
(x + 2)(x –
1) = 0 |
(x – 7)(x +
3) = 0 |
(x – 3)(x –
6) = 0 |
(x + 7)(x +
6) = 0 |
(x – 7)(x –
4) = 0 |
(x – 11)(x
+ 2) = 0 |
(x – 10)(x
+ 4) = 0 |
(x + 5)(x –
3) = 0 |
(x – 6)(x +
5) = 0 |
(x – 7)(x –
1) = 0 |
(x + 12)(x
+ 3) = 0 |
(x + 8)(x –
7) = 0 |
(x – 9)(x +
2) = 0 |
(x + 9)(x –
8) = 0 |
(x – 3)(x –
3) = 0 |
(x + 8)(x –
1) = 0 |
(x + 2)(x +
2) = 0 |
(x – 13)(x + 3) = 0 |
jít na příklady2